Doomsday Equilibria for Omega-Regular Games
نویسندگان
چکیده
Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information games. In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile such that all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players objective, then the objective of every player is violated. We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games. We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.
منابع مشابه
Doomsday Equilibria for Games on Graphs∗
Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information games. In this paper we propose a...
متن کاملRegular Potential Games
A fundamental problem with the Nash equilibrium concept is the existence of certain “structurally deficient” equilibria that (i) lack fundamental robustness properties, and (ii) are difficult to analyze. The notion of a “regular” Nash equilibrium was introduced by Harsanyi. Such equilibria are highly robust and relatively simple to analyze. A game is said to be regular if all equilibria in the ...
متن کاملCostly network formation and regular equilibria
We prove that for generic network-formation games where players incur a strictly positive cost to propose links the number of Nash equilibria is finite. Furthermore all Nash equilibria are regular and, therefore, stable sets.
متن کاملA theory of regular Markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification
This paper develops a theory of regular Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria that are all regular. These equilibria are essential and strongly stable. Moreover, they all admit purification. JEL classification numbers: C73, C61, C62.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Comput.
دوره 254 شماره
صفحات -
تاریخ انتشار 2014